64 research outputs found

    Feline Spongiform Encephalopathy: A Study of the Clinical Presentation and Pathology

    Get PDF
    Feline Spongiform Encephalopathy (FSE) was first reported in 1990 by Wyatt et al., over three years after Bovine Spongiform Encephalopathy (BSE) was first identified. At present only limited published clinical and pathological descriptions of FSE are available. The aims of this thesis are therefore to review the current literature on FSE and describe the clinical and pathological features of the cases in this study. The nine naturally occurring cases of FSE included in this thesis were presented to Glasgow University Veterinary School during the period of June 1990 to April 1998. A set of clinical criteria was identified allowing a presumptive ante-mortal diagnosis of FSE. These included: progressive behavioural changes, hyperaesthesia, ataxia, hypersalivation and intermittent pupillary dilatation, although not all where present in every' case. No evidence of a breed or sex predilection, geographic clustering, reliable routine diagnostic test or successful treatment modality could be identified. The nature and distribution of the pathological changes are very similar in all cases in this series, with the significant changes confined to the central nervous system (CNS). The changes include vacuolation of grey matter neuropil, vacuolation of individual neurones, Wallerian-type degeneration and a reactive astrocytosis. Neuropil vacuolation is widespread, but certain regions (including the cerebellar granule cell layer, deep cerebral layers, thalamus, basal nuclei and septal nuclei) appear to be preferentially affected. Vacuolation of individual neurones is selectively present in the dorsal nucleus of the vagal nerve and raphe nuclei, and occasionally present in the hypoglossal nucleus, vestibular nuclei and reticular formation. Characteristic patterns of pathological PrP accumulation in the CNS are evident on PrP immunocytochemistry, using monoclonal antibody 3F4 raised against hamster PrP. Aspects of the spongiform changes and PrP immunocytochemistry in these cases bear strong similarities to new variant CJD (vCJD), although with some differences. These similarities are consistent with circumstantial evidence suggesting that both FSE and vCJD originated from ingestion of material contaminated with the infective agent responsible for BSE (Bruce et al. 1997; Collinge et al. 1996)

    Computer-assisted radiographic calculation of spinal curvature in brachycephalic "screw-Tailed" dog breeds with congenital thoracic vertebral malformations: reliability and clinical evaluation

    Get PDF
    The objectives of this study were: To investigate computer-assisted digital radiographic measurement of Cobb angles in dogs with congenital thoracic vertebral malformations, to determine its intra- and inter-observer reliability and its association with the presence of neurological deficits. Medical records were reviewed (2009–2013) to identify brachycephalic screw-tailed dog breeds with radiographic studies of the thoracic vertebral column and with at least one vertebral malformation present. Twenty-eight dogs were included in the study. The end vertebrae were defined as the cranial end plate of the vertebra cranial to the malformed vertebra and the caudal end plate of the vertebra caudal to the malformed vertebra. Three observers performed the measurements twice. Intraclass correlation coefficients were used to calculate the intra- and inter-observer reliabilities. The intraclass correlation coefficient was excellent for all intra- and inter-observer measurements using this method. There was a significant difference in the kyphotic Cobb angle between dogs with and without associated neurological deficits. The majority of dogs with neurological deficits had a kyphotic Cobb angle higher than 35°. No significant difference in the scoliotic Cobb angle was observed. We concluded that the computer assisted digital radiographic measurement of the Cobb angle for kyphosis and scoliosis is a valid, reproducible and reliable method to quantify the degree of spinal curvature in brachycephalic screw-tailed dog breeds with congenital thoracic vertebral malformations

    Morphometric Measurements of the Mesencephalic Aqueduct in Normal Versus Abnormal Canine Brains: In Vivo MRI Study

    Get PDF
    Several conditions are found to be associated with the cerebral stenosis in young and adult in man. This aqueduct has no record in the veterinary field. The aims of this study are to define the normal shape and area of the aqueduct, establish a new parameter (an angle) in normal canine brains and finding out the effect of abnormalities on these parameters. The shape, area, signal intensity and the angle of the mesencephalic aqueduct of five groups were examined in this study. The results representing that the mesencephalic aqueduct normal shape, its angle and signal intensities are well defined and may be altered in abnormalities. The angle is also proportionally affected by the head shape of the dog. It is concluded that the mesencephalic aqueduct is changeable in abnormalities and its angle may be applied for defining the significant changes within the aqueduct

    Parallel Mapping and Simultaneous Sequencing Reveals Deletions in BCAN and FAM83H Associated with Discrete Inherited Disorders in a Domestic Dog Breed

    Get PDF
    The domestic dog (Canis familiaris) segregates more naturally-occurring diseases and phenotypic variation than any other species and has become established as an unparalled model with which to study the genetics of inherited traits. We used a genome-wide association study (GWAS) and targeted resequencing of DNA from just five dogs to simultaneously map and identify mutations for two distinct inherited disorders that both affect a single breed, the Cavalier King Charles Spaniel. We investigated episodic falling (EF), a paroxysmal exertion-induced dyskinesia, alongside the phenotypically distinct condition congenital keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID), commonly known as dry eye curly coat syndrome. EF is characterised by episodes of exercise-induced muscular hypertonicity and abnormal posturing, usually occurring after exercise or periods of excitement. CKCSID is a congenital disorder that manifests as a rough coat present at birth, with keratoconjunctivitis sicca apparent on eyelid opening at 10–14 days, followed by hyperkeratinisation of footpads and distortion of nails that develops over the next few months. We undertook a GWAS with 31 EF cases, 23 CKCSID cases, and a common set of 38 controls and identified statistically associated signals for EF and CKCSID on chromosome 7 (Praw 1.9×10−14; Pgenome = 1.0×10−5) and chromosome 13 (Praw 1.2×10−17; Pgenome = 1.0×10−5), respectively. We resequenced both the EF and CKCSID disease-associated regions in just five dogs and identified a 15,724 bp deletion spanning three exons of BCAN associated with EF and a single base-pair exonic deletion in FAM83H associated with CKCSID. Neither BCAN or FAM83H have been associated with equivalent disease phenotypes in any other species, thus demonstrating the ability to use the domestic dog to study the genetic basis of more than one disease simultaneously in a single breed and to identify multiple novel candidate genes in parallel

    The Chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis CLN7 disease?

    Get PDF
    Neuronal ceroid lipofuscinoses (NCLs) are a group of incurable lysosomal storage disorders characterized by neurodegeneration and accumulation of lipopigments mainly within the neurons. We studied two littermate Chihuahua dogs presenting with progressive signs of blindness, ataxia, pacing, and cognitive impairment from 1 year of age. Because of worsening of clinical signs, both dogs were euthanized at about 2 years of age. Postmortem examination revealed marked accumulation of autofluorescent intracellular inclusions within the brain, characteristic of NCL. Whole-genome sequencing was performed on one of the affected dogs. After sequence alignment and variant calling against the canine reference genome, variants were identified in the coding region or splicing regions of four previously known NCL genes (CLN6, ARSG, CLN2 [=TPP1], and CLN7 [=MFSD8]). Subsequent segregation analysis within the family (two affected dogs, both parents, and three relatives) identified MFSD8:p.Phe282Leufs13*, which had previously been identified in one Chinese crested dog with no available ancestries, as the causal mutation. Because of the similarities of the clinical signs and histopathological changes with the human form of the disease, we propose that the Chihuahua dog could be a good animal model of CLN7 disease

    Centronuclear myopathy in labrador retrievers: a recent founder mutation in the PTPLA gene has rapidly disseminated worldwide

    Get PDF
    Centronuclear myopathies (CNM) are inherited congenital disorders characterized by an excessive number of internalized nuclei. In humans, CNM results from ~70 mutations in three major genes from the myotubularin, dynamin and amphiphysin families. Analysis of animal models with altered expression of these genes revealed common defects in all forms of CNM, paving the way for unified pathogenic and therapeutic mechanisms. Despite these efforts, some CNM cases remain genetically unresolved. We previously identified an autosomal recessive form of CNM in French Labrador retrievers from an experimental pedigree, and showed that a loss-of-function mutation in the protein tyrosine phosphatase-like A (PTPLA) gene segregated with CNM. Around the world, client-owned Labrador retrievers with a similar clinical presentation and histopathological changes in muscle biopsies have been described. We hypothesized that these Labradors share the same PTPLA<sup>cnm</sup> mutation. Genotyping of an international panel of 7,426 Labradors led to the identification of PTPLA<sup>cnm</sup> carriers in 13 countries. Haplotype analysis demonstrated that the PTPLA<sup>cnm</sup> allele resulted from a single and recent mutational event that may have rapidly disseminated through the extensive use of popular sires. PTPLA-deficient Labradors will help define the integrated role of PTPLA in the existing CNM gene network. They will be valuable complementary large animal models to test innovative therapies in CNM

    Hereditary sensory and autonomic neuropathy in a family of mixed breed dogs associated with a novel RETREG1 variant.

    Get PDF
    BACKGROUND: Hereditary sensory and autonomic neuropathies (HSANs) are a group of genetic disorders affecting the peripheral nervous system. Two different associated variants have been identified in dogs: 1 in Border Collies and 1 in Spaniels and Pointers. OBJECTIVES: Clinically and genetically characterize HSAN in a family of mixed breed dogs. ANIMALS: Five 7-month-old mixed breed dogs from 2 related litters were presented for evaluation of a 2-month history of acral mutilation and progressive pelvic limb gait abnormalities. METHODS: Complete physical, neurological, electrodiagnostic, and histopathological evaluations were performed. Whole genome sequencing of 2 affected dogs (1 from each litter) was used to identify variants that were homozygous or heterozygous in both cases, but wild type in 217 control genomes of 100 breeds. Immunohistochemistry was used to assess protein expression. RESULTS: Complete physical, neurological, electrodiagnostic, and histopathological evaluations confirmed a disorder affecting sensory and autonomic nerves. Whole genome sequencing identified a missense variant in the RETREG1 (reticulophagy regulator 1) gene (c.656C > T, p.P219L). All affected dogs were homozygous for the variant, which was not detected in 1193 dogs from different breeds. Immunohistochemistry showed no expression of RETREG1 in the cerebellum of affected dogs. One of the affected dogs lived for 5 years and showed gradual progression of the clinical signs. CONCLUSIONS AND CLINICAL IMPORTANCE: We confirmed the diagnosis of HSAN in a family of mixed breed dogs and identified a novel and possibly pathogenic RETREG1 variant. Affected dogs experienced gradual deterioration over several years

    Mitochondrial fission factor (MFF) frameshift variant in Bullmastiffs with mitochondrial fission encephalopathy.

    Get PDF
    Familial cerebellar ataxia with hydrocephalus in Bullmastiffs was described almost 40 years ago as a monogenic autosomal recessive trait. We investigated two young Bullmastiffs showing similar clinical signs. They developed progressive gait and behavioural abnormalities with an onset at around 6 months of age. Neurological assessment was consistent with a multifocal brain disease. Magnetic resonance imaging of the brain showed intra-axial bilateral symmetrical focal lesions localised to the cerebellar nuclei. Based on the juvenile age, nature of neurological deficits and imaging findings, an inherited disorder of the brain was suspected. We sequenced the genome of one affected Bullmastiff. The data were compared with 782 control genomes of dogs from diverse breeds. This search revealed a private homozygous frameshift variant in the MFF gene in the affected dog, XM_038574000.1:c.471_475delinsCGCTCT, that is predicted to truncate 55% of the wild type MFF open reading frame, XP_038429928.1: p.(Glu158Alafs*14). Human patients with pathogenic MFF variants suffer from 'encephalopathy due to defective mitochondrial and peroxisomal fission 2'. Archived samples from two additional affected Bullmastiffs related to the originally described cases were obtained. Genotypes in a cohort of four affected and 70 unaffected Bullmastiffs showed perfect segregation with the disease phenotype. The available data together with information from previous disease reports allow classification of the investigated MFF frameshift variant as pathogenic and probably causative defect of the observed neurological phenotype. In analogy to the human phenotype, we propose to rename this disease 'mitochondrial fission encephalopathy (MFE)'

    Neural stem cells restore myelin in a demyelinating model of Pelizaeus-Merzbacher disease

    Get PDF
    Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI. In patients with a PLP1 duplication mutation, the most common cause of Pelizaeus-Merzbacher disease, the pathology is poorly defined because of a paucity of autopsy material. To address this, we examined two elderly patients with duplication of PLP1 in whom the overall syndrome, including end-stage pathology, indicated a complex disease involving dysmyelination, demyelination and axonal degeneration. Using the corresponding Plp1 transgenic mouse model, we then tested the capacity of transplanted neural stem cells to restore myelin in the context of PLP overexpression. Although developmental myelination and axonal coverage by endogenous oligodendrocytes was extensive, as assessed using electron microscopy (n = 3 at each of four end points) and immunostaining (n = 3 at each of four end points), wild-type neural precursors, transplanted into the brains of the newborn mutants, were able to effectively compete and replace the defective myelin (n = 2 at each of four end points). These data demonstrate the potential of neural stem cell therapies to restore normal myelination and protect axons in patients with PLP1 gene duplication mutation and further, provide proof of principle for the benefits of stem cell transplantation for other fatal leukodystrophies with ‘normal’ developmental myelination

    The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog

    Get PDF
    Chronic spinal cord dysfunction occurs in dogs as a consequence of diverse aetiologies, including long-standing spinal cord compression and insidious neurodegenerative conditions. One such neurodegenerative condition is canine degenerative myelopathy (DM), which clinically is a challenge to differentiate from other chronic spinal cord conditions. Although the clinical diagnosis of DM can be strengthened by the identification of the Sod1 mutations that are observed in affected dogs, genetic analysis alone is insufficient to provide a definitive diagnosis. There is a requirement to identify biomarkers that can differentiate conditions with a similar clinical presentation, thus facilitating patient diagnostic and management strategies. A comparison of the cerebrospinal fluid (CSF) protein gel electrophoresis profile between idiopathic epilepsy (IE) and DM identified a protein band that was more prominent in DM. This band was subsequently found to contain a multifunctional protein clusterin (apolipoprotein J) that is protective against endoplasmic reticulum (ER) stress-mediated apoptosis, oxidative stress, and also serves as an extracellular chaperone influencing protein aggregation. Western blot analysis of CSF clusterin confirmed elevated levels in DM compared to IE (p < 0.05). Analysis of spinal cord tissue from DM and control material found that clusterin expression was evident in neurons and that the clusterin mRNA levels from tissue extracts were elevated in DM compared to the control. The plasma clusterin levels was comparable between these groups. However, a comparison of clusterin CSF levels in a number of neurological conditions found that clusterin was elevated in both DM and chronic intervertebral disc disease (cIVDD) but not in meningoencephalitis and IE. These findings indicate that clusterin may potentially serve as a marker for chronic spinal cord disease in the dog; however, additional markers are required to differentiate DM from a concurrent condition such as cIVDD
    • …
    corecore